399 research outputs found

    Is it me? Self-recognition bias across sensory modalities and its relationship to autistic traits

    Get PDF
    Background Atypical self-processing is an emerging theme in autism research, suggested by lower self-reference effect in memory, and atypical neural responses to visual self-representations. Most research on physical self-processing in autism uses visual stimuli. However, the self is a multimodal construct, and therefore, it is essential to test self-recognition in other sensory modalities as well. Self-recognition in the auditory modality remains relatively unexplored and has not been tested in relation to autism and related traits. This study investigates self-recognition in auditory and visual domain in the general population and tests if it is associated with autistic traits. Methods Thirty-nine neurotypical adults participated in a two-part study. In the first session, individual participant’s voice was recorded and face was photographed and morphed respectively with voices and faces from unfamiliar identities. In the second session, participants performed a ‘self-identification’ task, classifying each morph as ‘self’ voice (or face) or an ‘other’ voice (or face). All participants also completed the Autism Spectrum Quotient (AQ). For each sensory modality, slope of the self-recognition curve was used as individual self-recognition metric. These two self-recognition metrics were tested for association between each other, and with autistic traits. Results Fifty percent ‘self’ response was reached for a higher percentage of self in the auditory domain compared to the visual domain (t = 3.142; P < 0.01). No significant correlation was noted between self-recognition bias across sensory modalities (τ = −0.165, P = 0.204). Higher recognition bias for self-voice was observed in individuals higher in autistic traits (τ AQ = 0.301, P = 0.008). No such correlation was observed between recognition bias for self-face and autistic traits (τ AQ = −0.020, P = 0.438). Conclusions Our data shows that recognition bias for physical self-representation is not related across sensory modalities. Further, individuals with higher autistic traits were better able to discriminate self from other voices, but this relation was not observed with self-face. A narrow self-other overlap in the auditory domain seen in individuals with high autistic traits could arise due to enhanced perceptual processing of auditory stimuli often observed in individuals with autism

    I Feel what You Feel if You Are Similar to Me

    Get PDF
    Social interactions are influenced by the perception of others as similar or dissimilar to the self. Such judgements could depend on physical and semantic characteristics, such as membership in an ethnic or political group. In the present study we tested whether social representations of the self and of others could affect the perception of touch. To this aim, we assessed tactile perception on the face when subjects observed a face being touched by fingers. In different conditions we manipulated the identity of the shown face. In a first experiment, Caucasian and Maghrebian participants viewed a face belonging either to their own or to a different ethnic group; in a second experiment, Liberal and Conservative politically active participants viewed faces of politicians belonging to their own or to the opposite political party. The results showed that viewing a touched face most strongly enhanced the perception of touch on the observer's face when the observed face belonged to his/her own ethnic or political group

    Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

    Get PDF
    Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others

    Who's Afraid of the Boss: Cultural Differences in Social Hierarchies Modulate Self-Face Recognition in Chinese and Americans

    Get PDF
    Human adults typically respond faster to their own face than to the faces of others. However, in Chinese participants, this self-face advantage is lost in the presence of one's supervisor, and they respond faster to their supervisor's face than to their own. While this “boss effect” suggests a strong modulation of self-processing in the presence of influential social superiors, the current study examined whether this effect was true across cultures. Given the wealth of literature on cultural differences between collectivist, interdependent versus individualistic, independent self-construals, we hypothesized that the boss effect might be weaker in independent than interdependent cultures. Twenty European American college students were asked to identify orientations of their own face or their supervisors' face. We found that European Americans, unlike Chinese participants, did not show a “boss effect” and maintained the self-face advantage even in the presence of their supervisor's face. Interestingly, however, their self-face advantage decreased as their ratings of their boss's perceived social status increased, suggesting that self-processing in Americans is influenced more by one's social status than by one's hierarchical position as a social superior. In addition, when their boss's face was presented with a labmate's face, American participants responded faster to the boss's face, indicating that the boss may represent general social dominance rather than a direct negative threat to oneself, in more independent cultures. Altogether, these results demonstrate a strong cultural modulation of self-processing in social contexts and suggest that the very concept of social positions, such as a boss, may hold markedly different meanings to the self across Western and East Asian cultures

    Do You See What I Mean? Corticospinal Excitability During Observation of Culture-Specific Gestures

    Get PDF
    People all over the world use their hands to communicate expressively. Autonomous gestures, also known as emblems, are highly social in nature, and convey conventionalized meaning without accompanying speech. To study the neural bases of cross-cultural social communication, we used single pulse transcranial magnetic stimulation (TMS) to measure corticospinal excitability (CSE) during observation of culture-specific emblems. Foreign Nicaraguan and familiar American emblems as well as meaningless control gestures were performed by both a Euro-American and a Nicaraguan actor. Euro-American participants demonstrated higher CSE during observation of the American compared to the Nicaraguan actor. This motor resonance phenomenon may reflect ethnic and cultural ingroup familiarity effects. However, participants also demonstrated a nearly significant (p = 0.053) actor by emblem interaction whereby both Nicaraguan and American emblems performed by the American actor elicited similar CSE, whereas Nicaraguan emblems performed by the Nicaraguan actor yielded higher CSE than American emblems. The latter result cannot be interpreted simply as an effect of ethnic ingroup familiarity. Thus, a likely explanation of these findings is that motor resonance is modulated by interacting biological and cultural factors

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Emerging Standards and the Hybrid Model for Organizing Scientific Events During and After The COVID-19 Pandemic.

    Full text link
    Since the beginning of 2020, the COVID-19 pandemic has dramatically influenced almost every aspect of human life. Activities requiring human gatherings have either been postponed, cancelled, or held completely virtually. To supplement lack of in-person contact, people have increasingly turned to virtual settings on-line, advantages of which include increased inclusivity and accessibility and reduction of carbon footprint. However, emerging online technologies cannot fully replace, in-person scientific events. In-person meetings are not susceptible to poor internet connectivity problems, and they provide novel opportunities for socialization, creating new collaborations, and sharing ideas. To continue such activities, a hybrid model for scientific events could be a solution offering both in-person and virtual components. While participants can freely choose the mode of their participation, virtual meetings would most benefit those who cannot attend in-person due to the limitations. In-person portions of meetings should be organized with full consideration of prevention and safety strategies including risk assessment and mitigation, venue and environmental sanitation, participant protection and disease prevention, and promoting the hybrid model. This new way of interaction between scholars can be considered as a part of a resilience system which was neglected previously and should become a part of routine practice in scientific community

    Patterns of default mode network deactivation in obsessive compulsive disorder

    Get PDF
    The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content.The first author was funded by the Brazilian National Counsel for Scientific and Technological Development (CNPq) as a Special Visiting Researcher of the Science Without Borders program (grant number: 401143/20147). This study was partially conducted at the Neuropsychophysiology Lab from the Psychology Research Centre (UID/PSI/01662/2013), University of Minho, and supported by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Science, Technology and Higher Education through national funds and co-financed by FEDER through COMPETE2020 under the PT2020 Partnership Agreement (POCI-01-0145FEDER-007653).info:eu-repo/semantics/publishedVersio

    Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data

    Get PDF
    The discovery of mirror neurons has suggested a potential neural basis for simulation and common coding theories of action perception, theories which propose that we understand other people's actions because perceiving their actions activates some of our neurons in much the same way as when we perform the actions. We propose testing this model directly in humans with functional magnetic resonance imaging (fMRI) by means of cross-modal classification. Cross-modal classification evaluates whether a classifier that has learned to separate stimuli in the sensory domain can also separate the stimuli in the motor domain. Successful classification provides support for simulation theories because it means that the fMRI signal, and presumably brain activity, is similar when perceiving and performing actions. In this paper we demonstrate the feasibility of the technique by showing that classifiers which have learned to discriminate whether a participant heard a hand or a mouth action, based on the activity patterns in the premotor cortex, can also determine, without additional training, whether the participant executed a hand or mouth action. This provides direct evidence that, while perceiving others' actions, (1) the pattern of activity in premotor voxels with sensory properties is a significant source of information regarding the nature of these actions, and (2) that this information shares a common code with motor execution
    corecore